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Abstract In this paper, we analize a novel approach for calibrating the one-factor
and the two-factor Hull–White models using swaptions under a market-consistent
framework. The technique is based on the pricing formulas for coupon bond options
and swaptions proposed by Russo and Fabozzi (J Fixed Income 25:76–82, 2016b; J
Fixed Income 27:30–36, 2017b). Under this approach, the volatility of the coupon
bond is derived as a function of the stochastic durations. Consequently, the price of
coupon bond options and swaptions can be calculated by simply applying standard
no-arbitrage pricing theory given the equivalence between the price of a coupon bond
option and the price of the corresponding swaption. This approach can be adopted to
calibrate parameters of the one-factor and the two-factor Hull–White models using
swaptions quoted in the market. It represents an alternative with respect to the existing
approaches proposed in the literature and currently used by practitioners. Numerical
analyses are provided in order to highlight the quality of the calibration results in
comparison with existing models, addressing some computational issues related to
the optimization model. In particular, calibration results and sensitivities are provided
for the one- and the two-factor models using market data from 2011 to 2016. Finally,
an out-of-sample analysis is performed in order to test the ability of themodel in fitting
swaption prices different from those used in the calibration process.
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1 Introduction

Interest rate stochastic models are widely used by practitioners for the evaluation of
fixed-income instruments. In this context, one- and two-factor short-rate models are
the most widely used in interest rate modeling.

Among the one-factor models, the more popular models include the Hull–White
model (HW1) proposed in Hull and White (1990), the Black–Karasinski model pro-
posed in Black and Karasinski (1991), and the CIR++ model proposed in Brigo and
Mercurio (2006). Recently, squared-Gaussian term structure models have received
increased attention in the literature where one-factor models have been proposed
by Jamshidian (1995), Pellser (1996) and Russo and Fabozzi (2016a).

Concerning the two-factor models, relevant two-factor models are the two-factor
Hull–White model (HW2) proposed in Hull and White (1994b) and the extension of
the Longstaff–Schwartz model1 proposed by Brigo andMercurio (2006) to fit the term
structure of interest rates (CIR2++).

All those models are based on an assumed dynamics in the continuously com-
pounded short-rate. Such models are able to generate yield curves of various realistic
forms where the parameters of the models can be estimated quite easily from market
data.

However, all the one-factor models have some unrealistic properties. They are
not able to generate all the yield curve shapes observed in practice. For example, the
Hull–White and the CIR++models can only produce an increasing curve, a decreasing
curve, and a curve with a small hump. Therefore, these models do not allow the so-
called twists of the term structure of interest rates, where yield curve changes with
short-maturity yields and long-maturity yields move in opposite directions. A further
critical point is that changes over infinitesimal time periods of any two interest rate
dependent variables will be perfectly correlated. This is, for example, the case for
any two bond prices or any two yields. This is due to the fact that all unexpected
changes are proportional to the shock to the short-rate. It is thus clear that the one-
factor diffusion models may very well be too simple to provide a reasonable fit of both
the cross-section and time-series dynamics of bond prices.

Instead, two-factor models are more flexible and should be able to generate addi-
tional yield curve shapes and yield curve movements relative to the one-factor models.
Furthermore, two-factor models are featured by a non-perfect correlations between
different interest rate dependent variables.

Despite the wide class of models available in the literature and despite the draw-
back related to the one-factor models, one-factor and two-factor Hull–White models
are among the most common, since they guarantee a good trade-off between analyt-
ical tractability and accuracy of the results. One of the interesting features of these
models is that they are able to fit the term structure of interest rates. Both models

1 Longstaff and Schwartz (1992).
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admit negative interest rates but this feature is not totally undesirable as, in the recent
years and for some currencies, debt instruments are experiencing or have experienced
negative interest rates for the short-term and medium-term sectors of the yield curve.
Furthermore, the two-factor Hull–White model is featured by a realistic correlation
structure between different rates.

When these types ofmodels are used for pricing purposes, they need to be calibrated
in a consistent manner using financial instruments quoted in the market. Calibrated
models can then be used to evaluate more complex derivatives and structured products.
Interest rate models are typically calibrated using caps, floors or swaptions, as these
derivatives are among the most liquid instruments traded in the market. In recent
years, market practices are moving towards the use of swaptions more than caps and
floors, as they contain information on the correlation between different maturities of
the interest rates curve. In fact, swaptions are able to capture the negative correlation
between stochastic factors in multi-factors interest rate models such as the two-factor
Hull–White model.

Under the HW1 the HW2 models, closed-form pricing formulas for zero-coupon
bond options, caps and floors are available. Instead, exact pricing formulas for Euro-
pean swaptions and European coupon bond options are not available. Consequently,
semi-analytic formulas or numerical techniques as binomial/trinomial trees have to be
considered for pricing and calibration purposes.2

In this paper, we address the problem related to the evaluation of swaptions for
calibrating both the HW1 and the HW2 models under a market-consistent setting. In
particular, we use the methodology recently introduced by Russo and Fabozzi (2016b,
2017b). Assuming that the forward price of a coupon bond is a martingale under the
forward risk-neutral measure, the proposed approach involves deriving the volatility
of the coupon bond as a function of the stochastic durations calculated in the case of,
respectively, the HW1 and the HW2 models. Once the volatility function is defined,
the price of a coupon bond option can be derived by simply applying standard no-
arbitrage pricing theory. Given the equivalence between the price of a coupon bond
option and the price of the corresponding swaption, this model can be adopted to
calibrate parameters of the HW1 and the HW2 models using swaptions quoted in the
market. The advantage of this approach is that, relying on the stochastic duration, it
allows us to obtain a convenient formula for the pricing of swaption that requires only
the computation of one integral to obtain the volatility of the coupon bond.

We extend the results obtained in Russo and Fabozzi (2016b, 2017b) by analysing
the empirical properties of the proposed models and by comparing the proposed
models with existing techniques currently used by practitioners: the Jamshidian’s
approach (Jamshidian 1989) for the one-factor model and the approximation proposed
by Schrager and Pelsser (2006) for the two-factor model. We perform numerical anal-
yses in order to highlight the quality of the calibration results in comparison with
existing models, highlighting some of the computational issues related to the opti-
mization procedure. Moreover, we calibrate and test the goodness of the models also

2 See Hull and White (1994a, b, 2001).
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under a negative interest rates environment; in this context, we use shifted log-normal
swaption quotes for calibration purposes as suggested in Russo and Fabozzi (2017a).

The paper is structured as follows: in Sect. 2 we describe the framework related
respectively to one-factor and two-factor Hull–White model, in Sect. 3 we show the
pricing of coupon bond options and swaptions, in Sect. 4 we discuss the calibration
procedure, in Sect. 5 we present the empirical results. Finally, we provide our conclu-
sion.

2 The framework: one-factor and two-factor Hull–White models

In this section, we describe the one- and the two-factor Hull–White models, follow-
ing Brigo and Mercurio (2006) and Russo and Fabozzi (2016b, 2017b). We formalize
the framework referring to an alternative representation of both the HW1 and the HW2
models in terms of Gaussian processes (with constant parameters) plus a deterministic
function.

2.1 One-factor Hull–White model

In the case of the one-factor Hull–White model, the short-rate r(t) at time t ≥ 0, under
the risk-neutral measure, is defined as follows:

r(t) = α(t) + x(t), (1)

where x(t) is the state variable while α(t) is a deterministic function of time. The
variable x(t) is such that

dx(t) = −ax x(t)dt + σxdWx (t), x(0) = 0, (2)

where ax and σx are model parameters while dWx (t) is a Brownian motion. Under
the HW1 model, the function α(t) is calculated as follows:

α(t) = f M (0, t) + σ 2
x

2a2x

(
1 − e−ax t

)2
. (3)

The price of a zero-coupon bond at time t with maturity in T > t can be expressed
analytically:

P(t, T ) = PM (0, T )

PM (0, t)

Px (0, t)

Px (0, T )
Px (t, T ), (4)

where PM (0, t) is themarket price of a zero-coupon bond quoted at t = 0 andmaturity
at t and Px (t, T ) is such that

Px (t, T ) = Gx (t, T )e−Hx (t,T )x(t). (5)
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Furthermore, we define the following quantities,

Gx (t, T ) = exp

{
− σ 2

x

2a2x

[
Hx (t, T ) − (T − t)

] − σ 2
x

4ax
Hx (t, T )2

}
, (6)

Hx (t, T ) = 1

ax

[
1 − e−ax (T−t)

]
. (7)

The price of a zero-coupon bond with maturity T satisfies the following stochastic
differential equation,

dP(t, T )

P(t, T )
= r(t)dt − σx DPx (t, T )dWx (t). (8)

The quantity DPx (t, T ) is the stochastic duration of the zero-coupon bond such that
(see Munk 1999):

DPx (t, T ) = − 1

P(t, T )

∂P(t, T )

∂x(t)
= Hx (t, T ). (9)

Let’s consider a coupon bond with cash flows payments Ci at time Ti such that:

Ci = K τ(Ti−1, Ti ) for i = 1, 2, . . . , n − 1,

Ci = K τ(Ti−1, Ti ) + 1 for i = n,

where K is the coupon rate and τ(Ti−1, Ti ) denotes the time measure between Ti−1
and Ti computed as a fraction of the year.

Denoting by B(t, Tn) the spot price at time t ≥ 0 of a coupon bond with maturity
Tn , we have that

B(t, Tn) =
n∑

i=1

Ci P(t, Ti ). (10)

Applying Ito’s lemma, we assume that, under the risk-neutral measure, the market
value of a couponbond at time t evolves according to the following stochastic dynamic:

dB(t, Tn)

B(t, Tn)
= r(t)dt − σx DBx (t, Tn)dWx (t). (11)

The quantity DBx (t, Tn) is the stochastic durations of the coupon bond such that

DBx (t, Tn) = − 1

B(t, Tn)

∂B(t, Tn)

∂x(t)
=

∑n
i=1 Ci P(t, Ti )Hx (t, Ti )∑n

i=1 Ci P(t, Ti )
. (12)
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2.2 Two-factor Hull–White model

Under the risk-neutral measure, the short-rate r(t) at time t ≥ 0 is defined as follows:

r(t) = α(t) + x(t) + y(t), (13)

where x(t) and y(t) are state variables while α(t) is a deterministic function of time.
The variables x(t) and y(t) are such that

dx(t) = −ax x(t)dt + σxdWx (t), x(0) = 0, (14)

dy(t) = −ay y(t)dt + σydWy(t), y(0) = 0, (15)

where ax , ay , σx and σy aremodel parameters while dWx (t) and dWy(t) are correlated
Brownian motions such that

dWx (t)dWy(t) = ρdt, (16)

with −1 ≤ ρ ≤ 1. Under the HW2 model, the function α(t) is calculated as follows:

α(t) = f M (0, t) + σ 2
x

2a2x

(
1 − e−ax t

)2 + σ 2
y

2a2y

(
1 − e−ay t

)2

+ ρ
σxσy

axay

(
1 − e−ax t

)(
1 − e−ay t

)
. (17)

The price of a zero-coupon bond at time t with maturity in T > t can be expressed
analytically as follows,

P(t, T ) = PM (0, T )

PM (0, t)

Pxy(0, t)

Pxy(0, T )
Pxy(t, T ), (18)

where Pxy(t, T ) is such that

Pxy(t, T ) = Px (t, T )Py(t, T )C(t, T ), (19)

and,

Px (t, T ) = Gx (t, T )e−Hx (t,T )x(t), (20)

Py(t, T ) = Gy(t, T )e−Hy(t,T )y(t). (21)

The quantity C(t, T ) represents the correlation-related component of the price and it
is formulated as follows,

C(t, T ) = exp

{
ρσxσy

axay

[
(T − t) − Hx (t, T ) − Hy(t, T )

+ 1

ax + ay

(
1 − e−(ax+ay)(T−t)

)]}
. (22)

123



Calibration of one-factor and two-factor Hull–White models…

Furthermore, we define the following quantities,

Gx (t, T ) = exp

{
− σ 2

x

2a2x

[
Hx (t, T ) − (T − t)

] − σ 2
x

4ax
Hx (t, T )2

}
, (23)

Gy(t, T ) = exp

{
− σ 2

y

2a2y

[
Hy(t, T ) − (T − t)

] − σ 2
y

4ay
Hy(t, T )2

}
, (24)

Hx (t, T ) = 1

ax

[
1 − e−ax (T−t)

]
, (25)

Hy(t, T ) = 1

ay

[
1 − e−ay(T−t)

]
. (26)

The price of a zero-coupon bond with maturity T satisfies the following stochastic
differential equation,

dP(t, T )

P(t, T )
= r(t)dt − σx DPx (t, T )dWx (t) − σy DPy (t, T )dWy(t). (27)

The quantities DPx (t, T ) and DPy (t, T ) are stochastic durations of the zero-coupon
bond with respect to the factors x and y respectively

DPx (t, T ) = − 1

P(t, T )

∂P(t, T )

∂x(t)
= Hx (t, T ), (28)

DPy (t, T ) = − 1

P(t, T )

∂P(t, T )

∂y(t)
= Hy(t, T ). (29)

Applying Ito’s lemma, we assume that under the risk-neutral measure themarket value
of a coupon bond at time t evolves according to the following stochastic dynamic,

dB(t, Tn)

B(t, Tn)
= r(t)dt − σx DBx (t, Tn)dWx (t) − σy DBy (t, Tn)dWy(t). (30)

The quantities DBx (t, Tn) and DBy (t, Tn) are the stochastic durations of the coupon
bond with respect to the factors x and y respectively,

DBx (t, Tn) = − 1

B(t, Tn)

∂B(t, Tn)

∂x(t)
=

∑n
i=1 Ci P(t, Ti )Hx (t, Ti )∑n

i=1 Ci P(t, Ti )
, (31)

DBy (t, Tn) = − 1

B(t, Tn)

∂B(t, Tn)

∂y(t)
=

∑n
i=1 Ci P(t, Ti )Hy(t, Ti )∑n

i=1 Ci P(t, Ti )
. (32)
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3 Pricing coupon bond options and swaptions

Given the spot price at time t of a coupon bond that starts at T0 with maturity Tn , we
define its forward price as,

B(t, T0, Tn) = B(t, Tn)

P(t, T0)
, (33)

with t < T0 < Tn . We assume the coupon bond forward price is a martingale under
the T -forward measure. Consequently, the ratio between the coupon bond price and
the zero-coupon bond price is a martingale under both HW1 and HW2 models.

3.1 Volatility function under the one-factor Hull–White model

In this section, following Russo and Fabozzi (2016b) we show that it is possible to
derive the volatility function to be used for coupon bond option and swaption pricing.
By application of Ito’s lemma we obtain that

dB(t, T0, Tn)

B(t, T0, Tn)
= −σx DBx (t, T0, Tn)dW

T
x (t), (34)

where dWT
x (t) is a Brownian motion under the T -forward measure.

The quantity DBx (t, T0, Tn) is defined as the forward stochastic duration of the
coupon bond. After simple calculations we obtain,

DBx (t, T0, Tn) = DBx (t, Tn) − DPx (t, T0)

=
∑n

i=1 Ci P(t, Ti )
[
Hx (t, Ti ) − Hx (t, T0)

]

∑n
i=1 Ci P(t, Ti )

. (35)

Given the process above, the variance of the forward price of the coupon bond is

σB(t, T0, Tn)
2 = σ 2

x DBx (t, T0, Tn)
2. (36)

In order to provide the pricing function, we need to derive the variance of the coupon
bond price under the T -forward risk-adjusted measure,

ΣB(t, T0, Tn)
2 =

∫ T0

t
σB(u, T0, Tn)

2du. (37)

Consequently, we find that the volatility of the coupon bond is

ΣB(t, T0, Tn) =
√∫ T0

t
σB(u, T0, Tn)2du. (38)
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The integral can be solved using a numerical method in order to calculate the volatility
of the coupon bond under the proposed model.

3.2 Volatility function under the two-factor Hull–White model

Following Russo and Fabozzi (2017b), by application of the Ito’s lemma, we obtain
that

dB(t, T0, Tn)

B(t, T0, Tn)
= −σx DBx (t, T0, Tn)dW

T
x (t) − σy DBy (t, T0, Tn)dW

T
y (t),

where dWT
x (t) and dWT

y (t) are Brownian motions under the T -forward measure.
The quantities DBx (t, T0, Tn) and DBx (t, T0, Tn) are defined as forward stochastic

durations of the coupon bond with respect to the factors x and y respectively. After
simple calculations we obtain,

DBx (t, T0, Tn) = DBx (t, Tn) − DPx (t, T0)

=
∑n

i=1 Ci P(t, Ti )
[
Hx (t, Ti ) − Hx (t, T0)

]

∑n
i=1 Ci P(t, Ti )

, (39)

DBy (t, T0, Tn) = DBy (t, Tn) − DPy (t, T0)

=
∑n

i=1 Ci P(t, Ti )
[
Hy(t, Ti ) − Hy(t, T0)

]

∑n
i=1 Ci P(t, Ti )

. (40)

Given the process above, the variance of the forward price of the coupon bond is,

σB(t, T0, Tn)
2 = σ 2

x DBx (t, T0, Tn)
2 + σ 2

y DBy (t, T0, Tn)
2

+ 2ρσxσy DBx (t, T0, Tn)DBy (t, T0, Tn).

In order to provide the pricing function, we need to derive the variance of the coupon
bond price under the T -forward risk-adjusted measure,

ΣB(t, T0, Tn)
2 =

∫ T0

t
σB(u, T0, Tn)

2du. (41)

Consequently, we find that the volatility of the coupon bond is

ΣB(t, T0, Tn) =
√∫ T0

t
σB(u, T0, Tn)2du. (42)

Also in this case, a numerical integration method is required to calculate the volatility
of the coupon bond under the proposed model.
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3.3 Closed formula for coupon bond options and swaptions

Consider the value at time t of an optionwritten on a couponbond that paysfixed annual
coupons.Thematurity of the option isT0 > t while the strike price is X . Theunderlying
coupon bond has maturity at time Tn with cash flows C1,C2, . . . ,Ci , . . . ,Cn paid at
future dates T1, T2, . . . , Ti , . . . , Tn . It is worth noting that, for option pricing purposes,
we consider only the bond’s cash flows paid after the option’s maturity. Consequently,
we neglect all the bond’s payments between t and T0. We assume that B(t, Tn) is
log-normally distributed under the T -forward risk-adjusted measure. We define as
E
T the expectation under the T -forward risk-adjusted measure denoted by MT (the

probability measure that is defined by the Radon–Nikodym derivative) andFt as the
sigma-field generated up to time t .

As coupon bond prices are assumed to be log-normal, we can price options on
coupon bonds explicitly following standard option pricing techniques. The results of
the previous sections allow us to explicitly calculate the price of a European coupon
bond option when the coupon bond price is log-normal and interest rates are stochastic
and evolve according to theHW1 or HW2 processes. According to option pricing
theory, the arbitrage-free price for a coupon bond call option (CBC) is,

CBC(t, T0, Tn, K , X) = P(t, T0)E
T
[(

B(T0, Tn) − X

)+∣∣∣∣Ft

]
. (43)

Consequently, we have that

CBC(t, T0, Tn, K , X) = B(t, Tn)Φ(d1) − X P(t, T0)Φ(d2), (44)

where Φ denotes the cumulative distribution function of the standard Gaussian distri-
bution with

d1 =
log

[
B(t,Tn)
P(t,T0)

1
X

]
+ 1

2ΣB(t, T0, Tn)2

ΣB(t, T0, Tn)
, (45)

and

d2 =
log

[
B(t,Tn)
P(t,T0)

1
X

]
− 1

2ΣB(t, T0, Tn)2

ΣB(t, T0, Tn)
. (46)

The corresponding coupon bond put option (CBP) can be obtained by simply applying
the put-call parity.

The proposed model can be used also to price swaptions since, from a pricing
perspective, swaptions are equivalent to coupon bond options. In particular, a European
payer (receiver) swaption can be shown to be equivalent to a European put (call) option
on a coupon bond with unitary strike. Denoting respectively by PSwpt (t, T0, Tn, K )

and RSwpt (t, T0, Tn, K ), the price of a payer and a receiver swaption with strike K

123



Calibration of one-factor and two-factor Hull–White models…

and maturity T0 (both written on an interest rate swap with issue date T0 and maturity
Tn), it follows that

CBC(t, T0, Tn, K , 1) = RSwpt (t, T0, Tn, K ), (47)

and

CBP(t, T0, Tn, K , 1) = PSwpt (t, T0, Tn, K ). (48)

Finally, swaptions can be evaluated as follows:

RSwpt (t, T0, Tn, K ) = B(t, Tn)Φ(d1) − P(t, T0)Φ(d2), (49)

and

PSwpt (t, T0, Tn, K ) = P(t, T0)Φ(−d2) − B(t, Tn)Φ(−d1), (50)

where

d1 =
log

[
B(t,Tn)
P(t,T0)

]
+ 1

2ΣB(t, T0, Tn)2

ΣB(t, T0, Tn)
, (51)

d2 =
log

[
B(t,Tn)
P(t,T0)

]
− 1

2ΣB(t, T0, Tn)2

ΣB(t, T0, Tn)
. (52)

4 Model calibration

Using the closed formulas derived in Sect. 3, we can calibrate Hull–White models
using prices of swaptions prevailing in the market. In particular, the objective of the
calibration process is to choose the model parameters in such a way that the model
prices are consistent with swaptions quoted by the market. The solution is found by
means of a numeric optimization procedure so as to minimize the square root of the
sum of the squares of the relative differences between market and model swaption
prices,

argmin
β

√√√
√

N∑

i=1

(
Swpti − SwptMi

SwptMi

)2

, (53)

where SwptMi is the value of the swaption quoted by the market and Swpti represents
the swaption’s theoretical price under the HW1 or HW2 models. The number of cali-
brated instruments is N , while β is the vector of parameters. The HW1model requires
the calibration of 2 parameters (a and σ ) while the HW2 model has 5 parameters (ax ,
ay , σx , σy and ρ).
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We calibrate all the model parameters at the same time in order to match market
prices. It is worth to highlight that it is one of the possible approaches that can be
adopted. In fact, some authors propose to estimate the mean reversion parameter using
historical data rather than calibrate it in the context of the optimization procedure
described above. Others estimate it in two separate steps. For instance, Schlenkrich
(2012) proposes to calibrate themean reversion parameter using Bermudan swaptions,
and the volatility parameter using European swaptions.

In the calibration process we use theoretical swaption prices (Swpti ) calculated
under the approach proposed by Russo and Fabozzi (2016b) for the HW1 model,
and Russo and Fabozzi (2017b) for the HW2 model. The numerical integrals in
Eqs. (37) and (41) are solved by discretizing the time at onemonth intervals.3 The opti-
mization problem is not convex, and we search for a local optimum with a simulated
annealing algorithm (Ingber 1996). Concerning the HW1 model, the convergence is
rather fast and stable, while for the HW2 model we test multiple starting points to
avoid local minima. In line with the common practices, we perform the calibration of
co-maturity swaptions (see Sect. 5.1). Still, this practice may induce some overfitting
and parameter instability, especially for the two-factor model. In Sect. 5.2 we repeat
the calibration process by considering a different calibration set that includes a grid
of swaptions characterized by different combinations of tenor and maturity.

In addition, we compare the calibration results with the results obtained using
respectively the Jamshidian’s approach and the Schrager–Pelsser approximation.

The Jamshidian’s approach is usually adopted by practitioners to calculate prices
for coupon bond options and requires the calculation of a zero-coupon bond option
price for each of the payment dates of the coupon bond after the option’s expiration
date. Although this method provides analytical pricing for swaptions, the formula is
not explicit in the model parameters. In fact, the critical value, for which the price of
the coupon-bearing bond equals the strike price of the option on the bond at option
maturity, has to be computed numerically.

Under the HW2 model, a well-known technique for the evaluation of European
swaptions is the one proposed by Brigo and Mercurio (2006). This solution involves a
semi-analytical formula that requires the numerical evaluation of an integral. However,
this approach poses some issues in practice since the integral does not have clear
boundaries and its evaluation requires to truncate the integration region. Instead, we
consider the Schrager–Pelsser approximation4 that is computationally more efficient
in comparison with the solution proposed by Brigo–Mercurio. However, a drawback
of the Schrager–Pelsser method is that the approximation error is smaller for shorter
tenors and maturity options and grows marginally for swaptions with higher tenors
and maturity.

Alternatively, the models could be calibrated using numerical schemes based on
binomial/trinomial trees, as proposed in Hull and White (1994a, b) and further dis-
cussed in Hull and White (2001).

3 Preliminary analyses show that the resolution of the discretization do not influence significantly the
calibration. Results are available upon request and are not reported for brevity.
4 This approach is implemented in Di Francesco (2012).
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Table 1 Calibrated parameters
for the one-factor Hull–White
model

Year Model a σ

2011 Jamshidian 0.1412 0.0181

Russo–Fabozzi 0.1298 0.0155

2012 Jamshidian 0.0803 0.0115

Russo–Fabozzi 0.1173 0.0120

2013 Jamshidian 0.1050 0.0142

Russo–Fabozzi 0.1983 0.0185

2014 Jamshidian 0.0320 0.0076

Russo–Fabozzi 0.0004 0.0057

2015 Jamshidian 0.0220 0.0080

Russo–Fabozzi 0.0012 0.0065

2016 Jamshidian 0.0304 0.0085

Russo–Fabozzi 0.0005 0.0065

5 Numerical results

5.1 Calibration results

The calibration of both the HW1 and the HW2 models is performed using EUR
swaption prices obtained from Bloomberg for the last business day in 2011, 2012,
2013, 2014, 2015 and 2016. In particular, we have considered at-the-money (ATM) co-
terminal swaptions. This is a commonpractice adopted to calibrate interest ratemodels,
in part due to hedging reasons. We highlight that for years 2011–2014 Black/log-
normal swaptions volatilities have been considered for calibration purposes while
for years 2015–2016 shifted log-normal swaption volatilities have been used. It is
needed in order to address the issue featuring the Black model under negative rate
environments.5

Tables 1 and 2 report the parameters of the one-factor Hull–White model (HW1)
and the two-factor Hull–White model (HW2). The HW1 model has been calibrated
using the Jamshidian decomposition (J) and the Russo–Fabozzi approach (RF). The
HW2 model has been calibrated using the Schrager–Pelsser approximation (SP) and
the Russo–Fabozzi approach. In order to evaluate the quality fitting, Table 3 reports
the Root Mean Square Percentage Error (RMSPE) calculated using market and model
prices under the two approaches analyzed, computed as in Eq. (53).

Concerning the HW1model (Table 1), the comparison of the calibrated parameters
presented in Table 1 shows rather similar values between the two approaches analyzed
before 2013, while since 2014 the Russo–Fabozzi approach selects smaller values for
the parameter a. Concerning the calibration error, The Russo–Fabozzi model shows
in all the cases smaller RMSPE (see Table 3, cf. columns 2 and 3).

Regarding the HW2 model calibration (Table 2), we note that the values of the
parameters of the process y (ay and σy), are generally smaller than parameters of

5 See Russo and Fabozzi (2017a) for further details about models calibration practices under negative rates.
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Table 2 Calibrated parameters for the two-factor Hull–White model

Year Model ax σx ay σy ρ

2011 Schrager–Pelsser 1.2056 0.0124 0.1685 0.0216 −1.0000

Russo–Fabozzi 0.2789 0.0991 0.0179 0.0229 −0.9999

2012 Schrager–Pelsser 0.6065 0.0296 0.1296 0.0172 −0.6188

Russo–Fabozzi 0.9987 0.0387 0.0229 0.0096 −0.9142

2013 Schrager–Pelsser 0.7617 0.0483 0.1621 0.0259 −1.0000

Russo–Fabozzi 0.9998 0.0560 0.0208 0.0116 −0.9441

2014 Schrager–Pelsser 0.4617 0.0223 0.0623 0.0128 −1.0000

Russo–Fabozzi 0.5248 0.0640 0.0149 0.0086 −0.8306

2015 Schrager–Pelsser 0.5322 0.0133 0.0338 0.0100 −0.9380

Russo–Fabozzi 0.3124 0.0510 0.0174 0.0140 −0.9818

2016 Schrager–Pelsser 0.2770 0.0118 0.0551 0.0136 −1.0000

Russo–Fabozzi 0.0756 0.2278 0.0220 0.0246 −0.9975

Table 3 Model calibration:
RMSPE for HW1 and HW2
models

Year HW1 J HW1 RF HW2 SP HW2 RF

2011 0.173 0.085 0.167 0.085

2012 0.030 0.024 0.025 0.025

2013 0.123 0.046 0.036 0.039

2014 0.173 0.089 0.072 0.058

2015 0.077 0.053 0.015 0.035

2016 0.078 0.048 0.015 0.039

the process x (ax and σx ) for both the calibration procedures (Russo–Fabozzi and
Schrager–Pelsser). This result is similar to the one obtained by Brigo and Mercurio
(2006). Concerning the correlation parameter, as the calibration process is performed
using swaptions, the correlation parameters should be different from − 1. However,
using the Schrager–Pelsser approach, the correlation parameter ρ is equal to − 1 in
four of the six trading days considered in the numerical analysis. In contrast, using
the Russo–Fabozzi approach, ρ is always strictly greater than − 1, implying that the
model is more capable to capture the correlation between interest rates with differ-
ent maturities. As far as the calibration error, we see in Table 3 that the two-factor
model, having more parameters, performs overall better than the one-factor model
showing smaller RMSPE (cf. columns 3 and 5). Comparing the two calibration tech-
niques (Russo–Fabozzi and Schager–Pelsser, cf. columns 4 and 5), we see that none
of the approaches dominate the other, with the Schager–Pelsser performing better in
2013, 2015 and 2016, and the Russo–Fabozzi in 2011, 2012 and 2014. the RMSPE
are very similar, with the Russo–Fabozzi approach method showing slightly better
performances.

In general, the calibration procedure under the Russo–Fabozzi approach seems
to perform well in comparison to state-of-art techniques used by practitioners. With
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respect to such practices, theRusso–Fabozzi approach shows similar calibration errors,
good analytical properties and, in the case of the HW2 model, the ability to estimate
correlation coefficients different than − 1.

5.2 Out-of-sample analysis

The calibration performed in Sect. 5.1 has been done on 10-years co-maturity swap-
tions, as commonly done by practitioners. Such choice, althoughmotivated by hedging
considerations, may lead to sub-optimal calibration results due to inefficient use of
data (only a small sub-set of swaptions quoted in the market are considered), and
overfitting, especially concerning the two-factor model that has a larger number of
parameters to calibrate.

Here, we test the out-of-sample performances of the HW1 and HW2 models, cali-
brated with the Russo–Fabozzi approach, by pricing a set of swaptions different from
those used in the calibration process. In particular, we evaluate a set of 170 swaptions
with maturity between 1 and 10years and tenor between 1month and 30years. We
price the instruments using Eqs. (49)–(52). We then compare model and market prices
using the RMSPE computed as in (53). Notice that, by introducing a common cali-
bration technique for the HW1 and the HW2 models, we are able to compare the two
models for pricing purposes, limiting the influence of calibration procedures.

We also test a calibration procedure that considers not only co-maturity swaptions,
but instead uses a set of 45 swaptions that span all the combinations of maturity and
tenor. This allows us to test the potential overfitting of the model to the calibration set
and to test how well the HW1 and HW2 models can fit the market swaption prices.

Table 4 reports the RMSPE for the HW1 model, calibrated on either 10-years co-
maturity swaptions, and the grid of 45 swaptions. For both procedures we report the
RMSPE for the calibration set and the one for the entire set of swaptions. Table 5 reports
the same data for the HW2model. We see that the good in-sample performances of the
HW1 model calibrated on 10-years co-maturities swaptions (column 2 of Table 4) are
not completely reflected by the pricing of the other swaptions in themarket, that present
higher errors (column 3). The calibration performed on a set of swaptions larger than
the 10-years co-maturity allows to reduce the out-of-sample pricing error (column
5), although the in-sample fit is not as good as in the previous case, denoting that
the parametrization of the HW1 model is too narrow to fit the entire set of swaptions.
Table 5 shows the results for theHW2model.Aswehighlighted in the previous section,
the in-sample fit on co-maturity swaptions is marginally better than the HW1 (column
2). Here we see that this improvement comes at the cost of worse pricing of swaptions
outside the calibration set (see column 3), suggesting the presence of overfitting. The
results for the alternative calibration set (columns 4 and 5) show instead much better
results compared to the HW1 model, thanks to the richer parametrization.

These results suggest that the HW2 model allows to better fit the price of swaption
across all the spectrum of tenures and maturities, but that the calibration set has to be
chosen carefully to avoid overfitting. Practitioners interested in hedging applications
that require a particularly accurate fit of a certain set of swaptions, may choose a
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Table 4 Model calibration:
RMSPE for the HW1 model
calibrated using 10-years
co-maturity swaptions and a grid
of 45 swaptions with different
tenor and maturity

Year Co-maturity swaptions Grid of swaptions

Calib. set All Calib. set All

2011 0.0850 0.3922 0.1396 0.1472

2012 0.0240 0.5636 0.1689 0.1796

2013 0.0458 0.8050 0.2297 0.2137

2014 0.0890 0.4665 0.2866 0.3227

2015 0.0534 0.4837 0.3188 0.3169

2016 0.0476 0.8129 0.4970 0.4721

Table 5 Model calibration:
RMSPE for the HW2 model
calibrated using 10-years
co-maturity swaptions and a grid
of 45 swaptions with different
tenor and maturity

Year Co-maturity swaptions Grid of swaptions

Calib. set All Calib. set All

2011 0.0852 0.3979 0.0765 0.0893

2012 0.0252 0.7352 0.0730 0.0637

2013 0.0387 0.3343 0.0891 0.0796

2014 0.0577 2.1734 0.2846 0.3373

2015 0.0350 2.2916 0.0528 0.0493

2016 0.0394 3.3505 0.0729 0.0605

different weighting scheme for the objective function in the optimization, in order to
give more importance to certain assets.

5.3 Sensitivity analysis

We provide here a brief analysis in order to study the sensitivity of swaption prices to
changes in parameters in the HW1 and HW2 models.

Figure 1 reports the effects on receiver swaptions prices of changes in the mean-
reversion parameter a (top panels) and interest rate volatility σ (bottom panels) under
the HW1. We have performed the analysis using swaptions with different tenors and
two different maturities, 0.5 and 5years. The x axes report the tenor of the receiver
swaption while the y axes reports its price. The baseline values of the parameters
are a = 0.1 and σ = 0.02. Looking at the upper panels we see that, the higher the
parameter a, the lower the price of the swaption. Moreover, the effect of changes in
a are particularly relevant for swaptions with long tenor, while for shorter tenors the
effect is limited, especially for swaptions with short maturity (Fig. 1, top-left panel).
Changes in σ instead have an opposite effect: higher levels of volatility lead to higher
prices, and the effect is consistent across maturities and tenors.

Figure 2 reports the sensitivity analysis for the HW2 model. The baseline values
for the parameters are ax = 0.3, ay = 0.1, σx = 0.02, σy = 0.02 and ρ = −0.8. We
change ay , σy and ρ with the values specified in Fig. 2. Focusing on the correlation
coefficient ρ, we see that values closer to − 1 are consistent with lower swaptions
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Fig. 1 HW1 model - Receiver swaption prices for different levels of σ and a

prices. The changes in prices are similar for different tenors (note the parallel shifts
in the graphs in bottom panels of Fig. 2), and the changes are stronger for shorter
maturities.

Overall, the two-factor Hull–White model allows a more complete parametrization
of the system, with a larger set of parameters that allows to fit accurately swaption
prices.

In relation to our optimization procedure, we also test the sensitivity of the RMSPE
with respect to the parameters of the HW1 and HW2 models, computing the error for
a grid of suitably chosen parameter values. Similarly to Sect. 5.2, we consider both
the RMSPE computed on 10-years co-maturity swaptions and on the entire grid of
170 swaptions with tenors ranging from 1 month to 30years and maturity from 1 to
10years.

The results for the HW1model are reported in Fig. 3, where the color represents the
value of the RMSPE.We can see that, in the case of the 10-years co-maturity swaptions
(left panel), the local minimum is located in a “long valley”, making the optimization
problem ill-posed and the solution likely to be unstable. Instead, the RMSPE surface
for the entire set of swaptions (right panel) appears to have a better defined optimum.
Figure 4 reports the sensitivity results for the HW2 model by showing some slices of
the RMSPE surface. In particular, we report the values for different combinations of
the parameters a1, a2, σ1, σ2 and ρ; each panel shows the surface for two parameters,
while the others are assigned the optimal value computed for the year 2011. The
optimization problem is clearly more challenging for the HW2 compared to the HW1
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Fig. 2 HW2 model—receiver swaption prices for different levels of σ and a

Fig. 3 HW1 model—RMSPE for different model parameters

123



Calibration of one-factor and two-factor Hull–White models…

Fig. 4 HW2 model—RMSPE for different model parameters
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model due to the higher dimensionality and the complexity of the objective function.
Still, we see that, also in this case, the surfaces for the 10-years co-maturity swaptions
set seem to present less clearly defined optima due to the presence of valleys that may
compromise the stability of the result. This is consistent with the results in Sect. 5.2,
where the calibration on co-maturity swaptions gave bad out-of-sample performances,
suggesting to pay particular care to the selection of the calibration set.

6 Conclusion

In this paper, we address the problem related to the evaluation of swaptions for
calibrating both the one-factor and the two-factor Hull–White models under a market-
consistent setting. In particular, we use the methodology recently introduced by Russo
and Fabozzi (2016b, 2017b). Assuming that the forward price of a coupon bond is a
martingale under the forward risk-neutral measure, the proposed approach involves
deriving the volatility of the coupon bond as a function of the stochastic durations
calculated in the case of, respectively, one-factor and two-factor Hull–White mod-
els. Once the volatility function is defined, the price of a coupon bond option can be
derived by simply applying standard no-arbitrage pricing theory. Given the equiva-
lence between the price of a coupon bond option and the price of the corresponding
swaption, this model can be adopted to calibrate parameters of the one-factor and the
two-factor Hull–White models using swaptions quoted in the market. The advantage
of this approach is that, relying on the stochastic duration, it allows us to obtain a
convenient formula for the pricing of swaption that requires only the computation of
one integral to obtain the volatility of the coupon bond.

We have extended the results obtained inRusso and Fabozzi (2016b, 2017b) by ana-
lyzing the empirical properties of the proposedmodels and by comparing the proposed
models with existing techniques currently used by practitioners: the Jamshidian’s
approach (Jamshidian 1989) for the one-factor model and the approximation pro-
posed by Schrager and Pelsser (2006) for the two-factor model. Numerical analyses
have been performed in order to highlight the quality of the calibration results in
comparison with existing models. Moreover, following Russo and Fabozzi (2017a),
we have calibrated and tested the goodness of the models under a negative interest
rates environment using shifted log-normal swaption quotes for calibration purposes.
In particular, some computational issues have been addressed to solve the optimiza-
tion model implemented to calibrate parameters. In general, the calibration procedure
under the Russo–Fabozzi approach seems to performwell in comparison to state-of-art
techniques used by practitioners. With respect to such practices, the Russo–Fabozzi
approach shows similar calibration errors, good analytical properties and, in the case
of the HW2 model, the ability to estimate correlation coefficients different than −1.
In addition, we performed an analysis aimed at studying the sensitivity of the solution
to changes in model parameters and an out-of-sample analysis in which we used the
calibrated model to price swaptions outside the calibration set. The sensitivity analysis
and the out-of-sample evaluation of the calibrated model suggest that the calibration
on co-maturity swaptions, although commonly used in the industry, may lead to sub-
optimal calibration, due to over fitting and inefficient use of the data, we recommend
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therefore to consider a larger set of swaptions for the calibration to improve the stability
of the results.

We can conclude that the Russo–Fabozzi approach presents several advantages
compared to the other calibration techniques. In fact, it relies on a largely analytical
pricing formula (requiring only the numerical computation of one integral), it can be
applied to both the one- and the two-factor Hull–White models and it does not require
approximations.
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